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Abstract
One of the goals of the present paper is to present a brief, and admittedly
somewhat biased, review of some recent theoretical advances in the field of
granular gases. Another goal is to highlight some challenges facing this field.
A third goal is to present some new results concerning the Chapman–Enskog
expansion. These include an extension to weakly frictional granular gases,
and a study of a stationary granular gas subject to a heat flux (an earlier study
describing a stationary sheared granular gas is presented as well). In addition, a
computer-aided method for inverting the linearized Boltzmann operator, which
should be useful for kinetic theorists, is presented in an appendix. A further
goal is to briefly discuss possible extensions beyond Boltzmann kinetics, as
well as beyond hydrodynamics, i.e., the moderately dense regime on one hand,
and the Knudsen regime on the other hand. An attempt is made throughout
this paper to put granular gases in a general context, by distinguishing between
those features that are common to granular and molecular gases and those that
are not. Also, stress is put on the physics (and methods) rather than phenomena.
While this is not a review article, parts of it are intended for the uninitiated in
the field.

1. Introduction

Granular gases [1] are collections of macroscopic solid particles that interact by inelastic
collisions. The term ‘macroscopic’ is taken to imply that

(i) the size of a grain is sufficiently large (say, larger than about a micron) to render Brownian
motion practically inconsequential (when the grains are embedded in an ambient fluid)
and
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(ii) most or all of the energy that is considered to be ‘lost’ into the internal degrees of freedom
of a grain during a collision is not retrievable in a practically finite time due to the large
number of these degrees of freedom.

The term ‘collision’ implies that the grain interactions are short ranged, and that the contact
time during a collision (the collision time) is short with respect to e.g., the mean free time. In
addition, it is often assumed that all collisions are binary (see however [2]). This is actually
true for the idealized case of hard sphere collisions, but only an approximation in reality, that
becomes better the more dilute the gas is. Furthermore, when the ambient fluid in which the
grains may be embedded is of consequence, the system comprises a suspension; following
Bagnold (see e.g., review [3]), when the ratio of the stress due to the grains and that due to the
fluid is sufficiently large (say, above 400), the effects of the fluid can be ignored.

On Earth granular matter needs to be fluidized by external forcing (such as vertical
vibration, horizontal shaking or shearing), else it is in a solid state. Gravity can cause
fluidization in rock slides and snow avalanches. In all of the above cases the granular gases are
in nonequilibrium states. This is the first and simplest consequence of the dissipative nature
of the grain interactions. Another, perhaps less obvious, consequence is the lack of scale
separation in granular gases. This property, as well as other consequences of inelasticity, is
taken up in the next section.

2. Some consequences of inelasticity and dimensions

The concept of a granular gas is superficially similar to that of the classical model of a molecular
gas. There are however important differences between these two ‘kinds’ of gases. The first
difference is of practical nature: due to the fact that the grains are of macroscopic dimensions,
their typical number in an actual granular system is far smaller than the Avogadro number.
Therefore fluctuations in granular gases are expected to be more prominent than in molecular
gases. However, if size were the only difference a (theoretically) sufficiently large sized
granular gas would have exhibited properties similar to those of a molecular gas, albeit on
larger scales. The inelasticity of the grain interactions dictates much deeper differences, some
of which are the following.

(i) As mentioned in the introduction, all granular gases which have finite kinetic energy
must be in non-equilibrium states, since energy must be pumped into the granular gas to
compensate for the losses incurred in the inelastic collisions.

(ii) Statistical fluctuations, instabilities or external forces may beget density inhomogeneities
in a granular gas. Since in relatively dense domains the rate of collisions (proportional to
the square of the number density) is higher than in dilute domains, the kinetic energy in
the dense domains decays at a higher rate than in the dilute ones. The ensuing pressure
difference leads grains from the dilute into the dense domains, thereby further increasing
the density of the latter, and giving rise to dense clusters [4–7]. It follows that no
granular gas can be found in a truly homogeneous state (such as molecular equilibrium,
in the absence of gravity). In unforced granular systems the clusters may merge in a
process of coarsening [8]. In sheared granular gases [7] an instability creates a density
nonuniformity that begets clusters. The latter collide with each other and disperse, and
are then recreated by the same mechanism. Sufficiently small granular systems will not
exhibit clustering [5], but even then there are linear instabilities which render the system
inhomogeneous [4–6, 9].

(iii) Most states of granular matter in general, and granular gases in particular, are metastable
and history dependent. This property can be related in part to clustering. For instance,
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upon increasing the shear rate in a uniform granular Couette system, one injects energy at
the boundaries, thus raising the granular temperature (defined as the average of the square
of the fluctuating velocity), hence the pressure, there. As a result, material moves away
from the boundaries toward the ‘centre’ of the system, where clusters and/or a central
plug are formed. More states of granular Couette systems can be created by varying the
initial conditions [7].

(iv) A ball hitting a floor with vertical velocity v is known to bounce off with a velocity ev,
where e is the coefficient of restitution. When the ball is dropped from rest at height h0,
its nth maximal height is e2nh0. The time that elapses between positions hn and hn+1 of
the ball is given by τn = τ0 en . Since the sum of τn is finite (as 0 < e < 1), it follows that
an infinite number of collisions can occur in a finite time. A similar process, known as
‘inelastic collapse’, may take place in granular gases [10, 11], leading (via a theoretically
infinite number of collisions) to the emergence of strings of particles whose relative
velocities vanish. For a review, see [12]. Clearly, ‘collapse’ is a non-hydrodynamic
phenomenon. In reality, e −→ 1 when the relative velocity of the colliding particles is
sufficiently low; therefore, the collapse process is never completed.

(v) Scale separation, between the microscopic (grain) scales and the macroscopic scales,
in granular gases is weak or nonexistent [13]. This is demonstrated here using the
example of a simple shear flow of a monodisperse collection of spheres, with a fixed
coefficient of normal restitution, e. The velocity field is given by V = γ yx̂, where γ
is the shear rate, x is the streamwise coordinate, and y a spanwise coordinate. In the
absence of gravity, γ−1 provides the only ‘input’ variable that has dimensions of time.
Recalling that the granular temperature has dimensions of squared velocity, it follows
from dimensional analysis (also from kinetic calculations, see below) that T ∝ γ 2�2,
where � is the mean free path (the only relevant microscopic length scale). We define the
degree of inelasticity, ε, by ε ≡ 1 − e2. Clearly, T should be larger, for a given value
of γ , the smaller ε is. Furthermore, when ε = 0, the shear work raises T indefinitely
(in molecular gases the excess energy escapes in the form of a heat flux through the
boundaries; there is no full equivalent to this in granular systems). Therefore T −→ ∞
as ε −→ 0. While this argument does not provide the precise form of this divergence, an
initial guess (corroborated by mean field, as well as detailed kinetic calculations [14–16])
would be that T ∝ 1

ε
. All in all, one obtains T = C γ 2�2

ε
. The value of C is about 1 in two

dimensions and 3 in three dimensions. It follows that γ �√
T

=
√
ε√
C

, i.e. the change of speed
over a mean free path (in the spanwise direction) is comparable to the thermal speed
(unless ε is very small), hence the shear rate can be considered ‘large’, and the system is
typically supersonic. Indeed, shocks are a frequent occurrence in granular gases, see [1]
for references. Consider next the mean free time, τ , i.e. the ratio of the mean free path
and the thermal speed: τ ≡ �√

T
. Clearly, in the simple shear flow τ and γ−1 are the

microscopic and macroscopic timescales characterizing the system, respectively. Since
τ
γ−1 = τγ = �γ√

T
=

√
ε√
C

, there is no good temporal scale separation except in near-
elastic cases. Consequently, one cannot a priori employ the assumption of ‘fast local
equilibration’ and/or use local equilibrium as a zeroth order distribution function (both
for solving the Boltzmann equation and for the study of generalized hydrodynamics of
these systems) unless the system is nearly elastic.

(vi) It follows from (v) that in the Chapman–Enskog (CE) expansion method (in ‘powers of
the gradients’) one cannot neglect higher order gradient contributions (e.g., Burnett [16])
to granular hydrodynamics, except when ε � 1. The Burnett equations are ill posed (but
one can use them for steady states, else a resummation may be needed [17]). At finite
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densities the Burnett coefficients diverge [18], possibly implying that the correct theory
is non-analytic in the gradients [19], hence nonlocal.

(vii) A molecular fluid that is not subject to strong thermal or velocity gradients possesses a
range, or plateau, of scales (larger than the mean free path and far smaller than the scales
characterizing macroscopic gradients) which can be used to define ‘scale independent’
field densities (e.g., mass density, stress). Such plateaus do not exist in systems which lack
scale separation. Consequently, some of the fields (e.g., the stress tensor) characterizing
granular gases may be scale (or resolution) dependent [20].

(viii) In the example of the simple shear flow, consider the ratio of the xx component of the
stress, τxx , and the pressure, p ≡ τxx +τyy+τzz

3 . As this is a (γ dependent) dimensionless
entity, which must be even in γ by symmetry, it follows that to second order in
γ : τxx

p = 1
3 (1 + cxx

γ 2�2

T ), in three dimensions, where cxx is dimensionless. Notice that

the O(γ 2) correction is a Burnett contribution (second order in the gradients). A similar
result holds for τyy. The two constants, cxx and cyy, are not required to be equal; indeed,
detailed kinetic calculations show that they are both O(1) and different from each other.
This results in significant normal stress differences. Notice that in molecular gases the
typical value of γ 2�2

T is negligibly small (for air at STP conditions and γ = 0.1 s−1, the
value is about 10−18). This shows yet another facet of granular gases: they may ‘amplify’
some negligible effects (in molecular gases) to the level of O(1) phenomena.

(ix) As granular gases at finite granular temperature are in non-equilibrium states, one should
not expect them to possess Maxwellian velocity distributions or exhibit equipartition.
On the contrary, one should probably be surprised when the distribution is (close to)
Maxwellian or equipartition is approximately obeyed.

As mentioned, one of the practical implications of the macroscopic grain sizes is the
enhancement of fluctuations in granular gases. There is also an experimental advantage to the
size, namely the fact that (at least part of) the dynamics of a granular gas is visible to the naked
eye; therefore, one can, e.g., study the inner structure of a shock by ‘just’ using a camera [21]
(in air the typical shock thickness is of the order of a tenth of a micron).

3. Kinetic theory of granular gases

3.1. Time dependent formulation

The derivation of the classical Boltzmann equation can be modified to account for inelastic
collisions [16, 22]. A basic assumption in the derivation, i.e., that the density is low, can
be easily theoretically conceived and experimentally realized. However, the assumption of
molecular chaos, even for low densities, is not as justified for granular gases as for molecular
gases. The reason is that the normal component of the relative velocity is reduced by a
factor e upon collision, thereby rendering the particle velocities more correlated. Indeed, such
correlations have been noted in molecular dynamic (MD) simulations [1, 4–7, 23]. As the
coefficient of restitution approaches unity, these correlations become smaller. This implies
that the Boltzmann equation for granular gases should apply (at best) to near-elastic collisions.
Since the CE expansion is valid only when there is scale separation, it follows that both the
kinetics and hydrodynamics of granular gases are restricted, at least in principle, to the case
of near-elastic collisions.

Consider a collection of monodisperse hard spheres, of unit mass, and diameter d , whose
collisions are characterized by a constant coefficient of normal restitution, e. The binary
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collision between spheres i and j results in the following velocity transformation:

vi = v′
i − 1 + e

2
(k̂ · v′

i j)k̂ (1)

where (v′
i , v′

j) are the precollisional velocities, (vi , v j) are the corresponding postcollisional

velocities, v′
i j ≡ v′

i − v′
j , and k̂ is a unit vector pointing from the centre of sphere i to that of

sphere j at the moment of contact. Note that the normal component of the relative velocity of
two colliding particles is reduced upon collision by a factor e.

Let f (v, r, t) denote the single-particle (or singlet) distribution function, i.e. the number
density of particles having velocity v at a point r, at time t . The Boltzmann equation,
corresponding to the above model, reads [16, 22]

∂ f (v1)

∂ t
+ v1 · ∇ f (v1) = d2

∫
k̂·v12>0

dv2 dk̂ (k̂ · v12)

(
1

e2
f (v′

1) f (v′
2)− f (v1) f (v2)

)
, (2)

where ∇ is a gradient with respect to r. The unit vector k̂ points from the centre of particle
‘1’ to the centre of particle ‘2’. The dependence of f on r and t is not explicitly spelled out
in equation (2), for the sake of notational simplicity. Notice that in addition to the explicit
dependence of equation (2) on e, it also implicitly depends on e through the relation between
the postcollisional and precollisional velocities. The condition k̂ · v12 > 0 represents the fact
that only particles that approach each other can collide.

In many-body systems which possess scale separation, one identifies the densities of the
conserved entities as hydrodynamic fields, whose dynamics is slow. When these fields barely
change on the spatial scale of a mean free path (‘small’ gradients) or the temporal scale of
a mean free time, the system can ‘locally equilibrate’ while the slow fields are practically
fixed. This renders local equilibrium a good ‘zeroth order’ distribution. The latter has the
same dependence on the values of the local fields as equilibrium has on the global fields.
Note that one can exchange the set of hydrodynamic fields for an equivalent ‘non-slow’
set, which depends on the original fields (such as the temperature field). In monodisperse
systems the set of slow or hydrodynamic fields consists of the number density, n(r, t) (or
mass density, ρ(r, t)), the momentum density p(r, t) (hence, one can use the velocity field,
V(r, t) ≡ p(r, t)/ρ(r, t) instead), and the energy density (for hard objects, this is equivalent
to the kinetic energy density; by subtracting the macroscopic kinetic energy density, 1

2ρV 2

from the ‘full’ energy density one obtains the fluctuating energy density). In the realm of
granular gases, n and p are ‘slow’, but the energy density is not strictly conserved. However,
when the degree of inelasticity is sufficiently small, it is justified to include it (or the granular
temperature, T (r, t)) as a hydrodynamic field, as the energy density is nearly a slow field.
Furthermore, it comprises an important characterization of the state of a granular gas. An
additional argument is presented below. The aforementioned fields are moments of the
single-particle distribution: n(r, t) ≡ ∫

dv f (v, r, t), V(r, t) ≡ 1
n(r,t)

∫
dv v f (v, r, t), and

T (r, t) ≡ 1
n(r,t)

∫
dv (v − V)2 f (v, r, t), respectively. It is a priori unclear whether these

fields are sufficient for a proper closure of the hydrodynamic equations of motion for granular
gases, since one cannot naively extrapolate from the case of molecular gases, but this turns out
to be the case (within the framework of the CE expansion). The equations of motion for the
hydrodynamic fields can be derived by multiplying the Boltzmann equation, equation (2), by 1,
v1 and v2

1 respectively, and integrating over v1. A standard procedure [24–26] (which employs
the symmetry properties of the collision integral on the right-hand side of the Boltzmann
equation) yields [15]

Dn

Dt
+ n

∂Vi

∂ri
= 0, (3)
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n
DVi

Dt
+
∂Pi j

∂r j
= 0, (4)

n
DT

Dt
+ 2

∂Vi

∂r j
Pi j + 2

∂Q j

∂r j
= −n�. (5)

Denote by u ≡ v − V the fluctuating (or peculiar) velocity. The fluxes in equations (3)–(5)
are given as follows: Pi j ≡ n〈ui u j〉 is the stress tensor, and Q j ≡ 1

2 n〈u2u j〉 is the heat flux
vector, where 〈 〉 denotes an average with respect to f . In addition, D

Dt ≡ ∂
∂ t + V · ∇ is the

material derivative, and �, which accounts for the energy loss in the (inelastic) collisions, is
given by � ≡ π(1−e2)d2

8n

∫
dv1 dv2 v

3
12 f (v1) f (v2). Equations (3)–(5) are exact consequences

of the Boltzmann equation. They also comprise the equations of continuum mechanics, and
thus their validity is more general than that of the Boltzmann equation [20]. The above (〈 〉)
averages, which determine the constitutive relations, follow from the Boltzmann equation and
are therefore limited to low density (for corrections see, e.g., [20]).

Local equilibrium is a solution of the Boltzmann equation for ε = 0, when gradients are
neglected. As no such solution exists for granular gases, the CE method needs to be modified in
this case. There are at present two (systematic) generalized CE expansions for granular gases.
The method proposed in [27] is based on an expansion in the Knudsen number (gradients)
around a local homogeneous cooling state (HCS, see e.g., [28])4. Formally, this is a solution
of the inelastic Boltzmann equation at zero Knudsen number. The method does not formally
restrict the value of ε to be small, hence, in principle, it is correct for all values of this parameter.
However, as explained above, this cannot be the case because of the lack of scale separation.
This fact notwithstanding, the constitutive relations obtained this way are claimed [27] to agree
with DSMC simulations for values of e as low as 0.6. They also agree, for small ε, with the
results presented below.

The classical Chapman–Enskog expansion assumes the smallness of the Knudsen number,
K ≡ �

L , where � is the mean free path given by � = 1
πnd2 , and L is a macroscopic length scale

i.e., the length scale which is resolved by hydrodynamics, not necessarily the system size.
Here we employ ε as a second small parameter. Note that the double limit ε → 0 and
K → 0, with constant number density, corresponds to a homogeneous, elastically colliding
collection of spheres for which the distribution function is Maxwellian. This limit is not
singular (local equilibration occurs on a timescale of a few mean free times; during such time
a small degree of inelasticity has a negligible effect). Consequently, the local equilibrium
distribution function can be used as zeroth order in a perturbation theory in K and ε. It is
convenient to perform a rescaling of the Boltzmann equation, as follows: spatial gradients
are rescaled as ∇ ≡ 1

L ∇̃, the rescaled peculiar velocity (in terms of the thermal speed) is

ũ ≡
√

3
2T (v − V), and f ≡ n( 3

2T )
3
2 f̃ (ũ). In terms of the rescaled quantities, the Boltzmann

equation assumes the form

D̃ f̃ + f̃ D̃
(
log n − 3

2 log T
)

= 1

π

∫
k̂·ũ12>0

dũ2 dk̂(k̂ · ũ12)

(
1

e2
f̃ (ũ′

1) f̃ (ũ′
2)− f̃ (ũ1) f̃ (ũ2)

)
≡ B̃( f̃ , f̃ , e),

(6)

4 The HCS is a scaling solution, fHCS, of the inelastic Boltzmann equation corresponding to an unforced system,
and a homogeneous (number) density, in which the time dependence of the distribution is determined by that of the
granular temperature: fHCS(t) = F(T (t)). The local HCS solution is one where the peculiar velocity distribution
at every point (and time) is the same as in the HCS solution, but the density and granular temperature can be space
dependent, corresponding to the local values of the hydrodynamic fields (as in local equilibrium).
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where D̃ ≡ K
√

3
2T (L

∂
∂ t + v · ∇̃). Notice that D̃ is not a material derivative since v is

not the hydrodynamic velocity but rather the particle’s velocity. Next, one can express
the (rescaled) distribution function, f̃ , as follows: f̃ (ũ) = f̃0(ũ)(1 + 	), where f̃0(ũ) =

1

π
3
2

e−ũ2
. Assume that 	 can be expanded in both small parameters, ε and K , as follows:

	 = 	K + 	ε + 	K K + 	K ε + · · ·, where subscripts indicate the order of the corresponding
terms in the small parameters, e.g., 	K = O(K ). In parallel, the operation of D̃ on
any function of the field variables, ψ , can be formally expanded as the following sum:
D̃ψ = D̃Kψ + D̃εψ + D̃K Kψ + D̃K εψ + D̃εεψ + · · ·, where, e.g., D̃K εψ is the O(K ε) term
in the expansion of D̃ψ in powers of K and ε. Since this expansion is well defined, we shall
refer to the symbols D̃K , D̃ε etc as operators in their own right.

Upon substituting e = 1 (or ε = 0) in the right-hand side of the Boltzmann equation, and
retaining only O(K ) terms, one obtains, after some algebra [16],

L̃(	K ) = 2K ũi ũ j

√
3

2T

∂Vi

∂ r̃ j
+ K

(
ũ2 − 5

2

)
ũi
∂ log T

∂ r̃i
. (7)

An overline denotes a symmetrized traceless tensor, i.e., Ai j ≡ 1
2 (Ai j + A ji)− 1

3 Akkδi j . The
linear inhomogeneous equation (7), which is identical to the O(K ) equation for an elastic hard
sphere gas (since ε does not affect this order), is soluble only when the Fredholm alternative (or
solubility condition) is satisfied, i.e. its right-hand side is orthogonal to the (left) eigenfunctions
of the operator L̃, which have vanishing eigenvalues: 1, u and u2, i.e. the conserved entities
at a collision. The isotropy and linearity of the operator L̃ [24–26] imply that the solution of
equation (7) is of the form

	K (ũ) = 2K 	̂v(ũ)ũi ũ j

√
3

2T

∂Vi

∂ r̃ j
+ K 	̂c(ũ)

(
ũ2 − 5

2

)
ũi
∂ log T

∂ r̃i
, (8)

where ũ ≡ ‖ũ‖. It is common to expand 	̂v, 	̂c, and similar functions in (truncated) series of
Sonine polynomials (for another method, see [16]). An accurate solution of this equation (as
well as the other equations arising in the CE expansion) is hard to obtain, since the integrals
involving high order Sonine polynomials are nontrivial. A computationally aided method,
which alleviates this difficulty, is presented in appendix A.

Since, by construction, the local equilibrium distribution function, f0, corresponds to
the actual values of the macroscopic fields, the perturbative corrections must not change the
values of these fields. This implies that (to each order in perturbation theory) 	 should be
orthogonal (with respect to the weight function f0) to the moments that define these fields,
which are also the collisional invariants, as well as the invariants of the (linearized) Boltzmann
operator: 1, ũ and ũ2. The above condition is the reason the (generalized) CE expansion can
be systematically carried out to all orders in the small parameters [16], as the same conditions
are also the solubility conditions of the linearized Boltzmann equation, at each order in the
expansion.

The above method yields the following constitutive relations, presented below to first
order in K and ε (see [16] for the Burnett contributions). The heat flux assumes the form
Qi = −κ̃n�

√
T ∂T
∂ri

− λ̃�
√

T 3 ∂n
∂ri

+ Burnett terms, where κ̃ ≈ 0.4101 + 0.1072ε + O(ε2)

and λ̃ ≈ 0.2110ε + O(ε2). Notice that the heat flux includes a ‘non-Fourier’ term at
order K ε, which is proportional to the density gradient and to ε. This term had been
first discovered in [16], rediscovered shortly thereafter in [27], and further rediscovered
on the basis of numerical simulations in [29]. It is of importance in applications, e.g., in
the determination of the temperature and density profile of a vertically vibrated granular

system [30]. The stress tensor reads Pi j = 1
3 nT δi j − 2µ̃n�

√
T ∂Vi
∂r j

+ Burnett terms, where
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µ̃ ≈ 0.3249 + 0.0576ε + O(ε2). The inelastic dissipation term, �, reads � = δ̃
�
T

3
2 + Burnett

terms, where [16] δ̃ ≈
√

16
27π ε − 0.0112ε2. The normal stress difference (between Pxx and

Pyy , normalized by their average), calculated from the Burnett terms (not shown here) equals
0.45 for e = 0.8 and 0.88 for e = 0.6, in good agreement with numerical results [31]: 0.42
and 0.86, respectively (for a volume fraction of ν = 0.025).

One of the conclusions from the above method concerns the choice of the slow fields for
use in the CE expansion. These fields are not necessarily the exactly conserved fields, but
rather those fields that are conserved in the limit which defines the zeroth order solution; in
our case, when ε −→ 0, the standard hydrodynamic fields become conserved.

The expansion in powers of ε is at best asymptotic. If it were convergent, there would
have been a radius of convergence within which one could have obtained a convergent theory
for negative values of ε. However, the latter corresponds to granular gases which ‘produce
energy’ upon collision, hence their corresponding fields would diverge (with time).

3.2. Frictional granular gases

Most models of granular gases ignore the frictional interactions of the grains, even though
all grains experience friction. The reason could be that it is not trivial to model frictional
restitution; worse, it is hard to develop hydrodynamic equations of motion which account for
friction (see however [32–35]. In addition, it is noteworthy that frictionless models have
encountered numerous successes in describing some aspects of the dynamics of granular
gases [1]. This may indicate that tangential restitution may not be very important for the
description of some properties of granular gases. However, it is known that some aspects of
granular gas dynamics are strongly dependent on friction, cf, e.g., the recent study of the effects
of friction on granular patterns [36], and friction induced hysteresis [37]). Furthermore, it is
known that friction enhances non-equipartition in the homogeneous cooling state; cf, e.g., [38–
42]. It is therefore curious that a rather small proportion of the granular literature is devoted
to frictional granular hydrodynamics; cf, e.g., [32, 43–45].

The study of gases whose constituents experience frictional interactions started (in
1894!) in the realm of molecular gases [25, 46]. Applications include granular
celestial systems [47, 48]. In previous kinetic theoretical based studies of granular
hydrodynamics [32, 44, 45] it is assumed that the basic distribution function is Maxwellian in
both the velocity and angular velocity, and corrections due to gradients are identified (on the
basis of symmetry). The assumed distribution function is substituted in the Enskog equations5

[49], resulting in a closure for the constitutive relations. The above distribution corresponds to
the rough elastic limit, which is appropriate for e.g., rough molecules. Since the basic model
used for the description of granular gases is that of smooth particles (usually spheres), our goal
is to study the case of weak friction, as a perturbation around the smooth limit. Specifically, we
consider, as in the above, a monodisperse system of spherical grains of mass m = 1, diameter
d , and moment of inertia I (for homogeneous spheres, I = 2

5 (
d
2 )

2), each. Denote the radius
of gyration of a grain by κ (with κ ≡ 4I

d2 ). The velocity of particle ‘i ’ is denoted by vi , and
its angular momentum by ωi . It is convenient to define a ‘spin variable’ si ≡ d

2 ωi , which has
dimensions of speed.

Consider a binary collision between sphere ‘1’ and sphere ‘2’. Let k be a unit vector
pointing from the centre of sphere ‘2’ to the centre of sphere ‘1’. The relative velocity of

5 The Enskog equations are equations for averages of single-particle properties, which can be derived from the
Boltzmann equation, or by direct considerations [49]. They should not be confused with the Enskog–Boltzmann
equation, which is a modified Boltzmann equation, designed to account for finite density effects.
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sphere ‘1’ with respect to sphere ‘2’, at the point of contact (when they are in contact), is
g12 = v12 + k × s12, where v12 ≡ v1 − v2, and s12 ≡ s1 + s2. In the following, precollisional
entities are primed. During a collision the normal component of the relative velocity changes
according to k·g12 = −ek·g′

12, where e is the coefficient of normal restitution. The effect of the
tangential impulse at a collision is modelled as in [40, 45], with slight notational differences.
The underlying physics of this model is as follows. Let γ be the angle between −k and
the relative velocity of the grains at the point of contact: cosγ ≡ − k·g′

12
g′

12
= − k·v′

12
g′

12
, where

g′
12 ≡ ‖g′

12‖; clearly, 0 � γ � π
2 . When γ is small, the direction of the relative velocity of

the colliding particles, at the point of contact, is close to that in a head-on collision. One can
imagine that the particles temporarily stick to each other (as in a rough particle collision), then
are released with a relative tangential velocity which is a fraction (positive or negative) of the
original relative tangential velocity. This fraction, denoted by β0 (with −1 � β0 � 1, else
energy can be ‘created’ in the collisions), is assumed to be constant in the model (though it really
is not). The physical picture behind the possible reversal of the relative tangential velocity
(β ≈ 1) will not be explained here (see e.g., [50] and references therein). In the case when
γ is large, one can model the frictional interaction by assuming that the tangential part of the
impulse is the product of the (kinetic) friction coefficient,µ, and the normal (i.e. the direction k)
part of the impulse. Define γ0 such that if γ > γ0 there is sliding (Coulomb friction) during the
collision, whereas the above described ‘sticking’ occurs for γ < γ0. Straightforward algebra
shows that in both cases one can write (for the tangential part of the relative velocity at contact)
k×(k×g12) = −β(γ )k×(k×g′

12), whereβ(γ ) = min{β0,−1+ 1+κ
κ
(1+e)µ cot γ }. The latter

formula is obtained by demanding continuity of β(γ ) across γ0. Using the conservation laws
for the linear and angular momenta one obtains the transformation between the precollisional
and postcollisional velocities and spins:

vi = v′
i − σi

1 + e

2
(k · g′

12)k + σi
κ

2

1 + β(γ )

1 + κ
k × (k × g′

12)

si = s′
i +

1

2

1 + β(γ )

1 + κ
k × g′

12

(9)

where i = 1, 2, σ1 = 1 and σ2 = −1. The Jacobian of this transformation is given by

J (γ ) ≡
∣∣∣∣∂(v1, v2, s1, s2)

∂(v′
1, v′

2, s′
1, s′

2)

∣∣∣∣ =
{

eβ2
0 γ < γ0

e|β(γ )| γ > γ0

}
. (10)

Let f (v1, s1, r, t) (≡ f1) denote the single-particle distribution (of the velocity and spin)
function at point r and time t . The Boltzmann equation satisfied by f1 is

∂ f1

∂ t
+ v1 · ∇ f1 = B( f, f ; e, β0, µ)

≡ d2
∫

k·v12>0
dv2 ds2 dk(k · v12)

(
1

eJ (γ )
f ′
1 f ′

2 − f1 f2

)
. (11)

As explained in the above, the choice of the hydrodynamic fields is dictated by the limit
that defines the zeroth order solution. In the smooth elastic limit the conserved entities are the
mass (or number), momentum and energy densities, and all the particles’ angular velocities (or
spins). Therefore the hydrodynamic fields are the mass (or number) density, the momentum
density (or velocity), the granular temperature (which is trivially related to the energy density),
and all the spin-dependent number densities (i.e., the number density for a given value of the
spin), n(s, r, t). In other words, the system is considered to be a mixture, whose components are
indexed by the respective values of their spins. To zeroth order (i.e., in the smooth limit) spins
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can only diffuse around, hence n(s, r, t) obey diffusion equations. All in all, hydrodynamic
fields are given by V(r, t) ≡ 1

n

∫
v f (v, s, r, t) dv ds, T (r, t) ≡ 1

n

∫
u2 f (v, s, r, t) dv ds, and

ρ(s, r, t) ≡ 1
n

∫
f (v, s, r, t) dv, where u is the peculiar velocity, u ≡ v−V(r, t), and n denotes

n(r, t). Another field of interest is the velocity field corresponding to particles of spin s. It is
defined by V(s, r, t) = 1

nρ(s,r,t)

∫
v f (v, s, r, t) dv. The latter is not a hydrodynamic field, as it

does not correspond to a conserved entity in the smooth elastic limit, and indeed it is expressible
in terms of the hydrodynamic fields (see below),as an additional constitutive relation. A similar
procedure to that used in the frictionless case now produces the continuum equations of motion
from the (moments of the) Boltzmann equation. The form of the (continuum mechanics)
equations for the velocity and temperature fields is the same as for smooth particles (the
constitutive relations are different). In addition, the new field ρ satisfies

n
Dρ(s)

Dt
=

∫
B( f, f, v, s) dv − ∇ · (nρ(s)δV(s)) (12)

where D
Dt is the material derivative. Also, δV(s, r, t) = V(s, r, t) − V(r, t) is the relative

velocity between the particles of spin s and the velocity field. The stress tensor is given by
Pαβ = ∫

uαuβ f du ds, the heat flux vector is Qα = 1
2

∫
uαu2 f du ds, and the energy sink term

is � = − ∫
dv1 ds1

v2
1

2 B( f, f, v1, s1).
The small parameters used in the CE expansion for this problem are the Knudsen number,

K , the degree of inelasticity, ε, and ε3 ≡ 1 − β2
0 . Mathematically, in this limit one can choose

the friction coefficient to be O(1), but this is not compatible with the smooth limit, hence we
choose the value ofµ to be an additional small parameter. As this value affects the results only
to third order in the small parameters, one may ignore the effect of µ altogether (to second
order) and therefore β can be taken to equal the constant β0 (which is assumed to be close to
−1).

The zeroth order distribution function, f0 (which solves the Boltzmann equation for

ε = ε3 = K = 0), is given by f0(u, s) = fM (u)ρ(s), where fM (u) = n( 3
2πT )

3
2 e− 3u2

2T . The full
single-particle distribution function, f (v, s), can be written as f (v, s) = f0(u, s)(1 +φ(u, s)).
As in the frictionless case, it is assumed that φ can be expanded in the small parameters:
φ = φK + φε + φε3 + φK ε + · · ·.

The perturbative solution of the Boltzmann equation, in powers of K , ε, and ε3, involves
the repeated solution of L̃φgiven order = Rsame order , where Rsame order depends on previous
orders, and the linearized Boltzmann operator, L̃ , is given by L̃φ ≡ d2

∫
k·v12>0 dv2 ds2 dk(k ·

v12) f0(φ
′
1 +φ′

2 −φ1 −φ2). The algebra involved in these inversions is rather heavy (the use of
rather high orders in expansions in Sonine polynomials is required; convergence is obtained
at sixth order in the polynomials). It has been carried out by employing the method described
in appendix A. The application of the above CE expansion yields constitutive relations for
the stress tensor, the heat flux, the energy sink, the field δV, and the term

∫
B dv. We have

developed those constitutive relations to second (Burnett) order in the small parameters. As
the results are rather cumbersome they are not presented here. Instead, we wish to mention
our finding that the spin distribution functions for the HCS and the simple shear flow (the ones
we calculated) are non-Maxwellian; both have power law tails. Interestingly, the distribution
function for the simple shear flow is exactly expressible as ρ(s) = A0(B + Cζ 2)−

A
2C , where

s ≡ ‖s‖, ζ ≡ s√
T

is the normalized spin, and A0, B,C and A are numerical constants that
depend on the collision parameters. Finally, as only the dilute case is considered here, the
stress tensor (being the average of a symmetric entity) is symmetric, i.e., one does not obtain
a micropolar theory [50].
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3.3. Kinetic theory for steady states

There are several reasons for directly studying the steady state solutions of the Boltzmann
equation, instead of, e.g., just considering the stationary solutions of the corresponding (time
dependent) hydrodynamic equations. First, it is often simpler to consider ‘just’ stationary
solutions. Furthermore, as it turns out, stationary solutions reveal much physics that the nearly
automatic machinery of the CE method does not (at least not directly). In addition, it is
convenient (and perhaps easier) to consider non-hydrodynamic limits (such as the Knudsen
limit) employing the stationary solution. These points should become evident below.

3.3.1. Simple shear flow in two dimensions. Consider a collection of identical smooth discs,
of diameter d , and unit mass, residing in a plane, whose (binary) collisions are characterized by
a fixed coefficient of normal restitution, e. The collision rule is the same as in equation (1). The
Boltzmann equation for a two-dimensional monodisperse collection of inelastically colliding
discs, in a steady state, reads v1 · ∇ f (v1) = B( f, f, e), where B( f, f, e) is the nonlinear
Boltzmann collision operator given by

B( f, f, e) ≡ d
∫

k̂·v12>0
dv2 dk̂(k̂ · v12)

(
1

e2
f (v′

1) f (v′
2)− f (v1) f (v2)

)
. (13)

Let β ≡ 1
2T . It is convenient to employ the following non-dimensionalization: the

dimensionless velocity and position vectors are given by ṽ ≡ √
βv and r̃ ≡ r

�
, respectively,

where � ≡ 1
2nd is the mean free path. Let f ≡ nβ f̃ define the dimensionless single particle

distribution function f̃ . The Maxwellian distribution, f̃0, is given by f̃0 = 1
π

e−ṽ2
(recall

that this is a 2D case). In a state of uniform density, f is a function of the peculiar velocity,
u ≡ v − V, alone. The rescaled Boltzmann equation reads (ũ1 + Ṽ) · ∇̃ f̃ (ũ1) = B̃( f̃ , f̃ , e),
where ∇̃ is a gradient with respect to the dimensionless coordinates, Ṽ(r̃) is the dimensionless
macroscopic velocity, and

B̃( f̃ , f̃ , e) = 1

2

∫
k̂·ũ12>0

dk̂ dũ2(k̂ · ũ12)

(
1

e2
f̃ (ũ′

1) f̃ (ũ′
2)− f̃ (ũ1) f̃ (ũ2)

)
. (14)

Consider the shear flow given by Ṽ = γ̃ ỹx̂, where γ̃ ≡ √
β�γs , γs being the shear rate. In

this case (and assuming n and T to be uniform), f̃ is a function of ũ alone. Since for this
flow Ṽ · ∇̃ f̃ vanishes, the pertinent Boltzmann equation assumes the following form (below
the tilde signs are omitted for simplicity): −γ u1y

∂ f
∂u1x

= B( f, f, e), where u1x and u1y are the
Cartesian components of u1.

As before, we specialize to the case of a slightly inelastic granular gas, i.e. ε ≡ 1 − e2 is
taken to be a small parameter. Unlike in the general unsteady case, here one cannot perform a
perturbative expansion in ε and the Knudsen number, since these two are related in the steady
state. Therefore, one has to first understand this relation, then use it in order to construct a
consistent perturbation theory. In the case at hand, recall from the introduction that the granular
temperature is given by T = C γ 2�2

ε
. Consider now the double limit, γ −→ 0 and ε −→ 0,

with the ratio γ 2

ε
kept fixed. In this limit one obtains a state of equilibrium (since there is no

shear and no inelasticity), with the rescaled distribution being f0 = 1
π

e−u2
, while the value of

the temperature is kept fixed. As explained in the above, this limit is not singular. Therefore,
by defining a scaled variable, γ ∗, by γ ≡ √

εγ ∗, and assuming that γ ∗ is O(1), one can obtain
a systematic perturbative expansion in this case. Since γ ∗ can still have some dependence
on ε, it is convenient to write the distribution function as f (u) ≡ f0(u)(1 + 	(u)), and take
	 and γ to be represented by power series in

√
ε: 	(u) = √

ε	1(u) + ε	2(u) + · · ·, and
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γ = γ1
√
ε + γ2ε + γ3ε

3
2 + O(ε2). Notice that the above definitions of the dimensionless shear

rate and temperature immediately imply the following (dimensional) relation:

T = �2γ 2
s

2(γ1
√
ε + γ2ε + · · ·)2 . (15)

A perturbative calculation [15] of the solution of the Boltzmann equation, that is based on
the above ansatz for the distribution function, and γ , yields γ1 ≈ 0.8771 and γ2 = 0. These
results agree, as expected, with those obtained from the full hydrodynamic description. It
follows from the obtained distribution function that the stress tensor components are given
by (in dimensionless units): τxx = 1

2 + ετ̃xx + O(ε2), τxy = τyx = √
ετ̃xy + O(ε

3
2 ) and

τyy = 1
2 + ετ̃yy + O(ε2), where τ̃xx = 0.2612, τ̃yy = −0.2612, and τ̃xy = −0.3572.

Consequently, the ratio of τxx and τyy is a universal function of ε, given, to second order
in the above perturbation theory, by

τxx

τyy
≈ 1 + 0.5224ε

1 − 0.5224ε
. (16)

As in the above, the anisotropy of the normal stresses is a Burnett effect (also, an O(ε) effect),
i.e., it is not captured at the Navier–Stokes level (linear order in the gradients). Notice that
the general form of this expression (i.e., without the substitution of the relation between the
shear rate and the granular temperature) is correct for molecular fluids as well. If one does not
substitute the relation between the granular temperature and shear rate, leading to equation (16),

one obtains 0.679 γ
2
s �

2

T instead of 0.5224ε in equation (16), in agreement with the Burnett order
result for an elastically colliding gas. In this case (following the above explanation) the ratio
of normal stresses is very close to unity.

3.3.2. The heat conducting granular gas,with gravity. Consider a three-dimensional granular
gas, composed of monodisperse spheres of diameter d , and unit mass, whose collisions are
characterized by a fixed coefficient of normal restitution, e. As in the above, the degree of
inelasticity is defined by ε ≡ 1 − e2. Assume that the gas is homogeneous in the xy plane, the
projection of the velocity in the x, y plane is isotropically distributed, and the gas is subject
to gravity in the −z direction. This corresponds, e.g., to a gas excited by a vibrating floor, in
the absence of convection. The Boltzmann equation in this case is vz

∂ f
∂z − g ∂ f

∂vz
= B( f, f ; e),

where B is given by equation (13). The hydrodynamic equations are obtained (as usual) by
multiplying the Boltzmann equation by 1, v, and v2, and integrating over the velocity. Since, by
assumption, the macroscopic velocity field vanishes, the multiplication by 1 yields an identity,
0 = 0. The multiplication by vx or vy yields similar identities (using the assumed isotropy
in the x, y plane). The multiplication by vz yields d(nTz)

dz + ng = 0, where Tz ≡ 1
n

∫
v2

z f dv.
If the velocity distribution were isotropic, one would have obtained Tz = 1

3 T , and the last
equation would have yielded the standard barometric formula. The multiplication of the above
stationary Boltzmann equation by v2, yields 2 ∂Q

∂z = −n�, where � is the energy sink, and

the (z-component of the) heat flux is given by Q = 1
2

∫
vzv

2 f dv. Note that this problem has
several length scales: the mean free path, �, the ‘gravitational length’, T

g , and the hydrodynamic
resolution (used to define the Knudsen number, K ), L. One could therefore devise a multiple-
scale perturbation theory of the pertinent Boltzmann equation. However, by noticing (as in the
previous subsection) that these scales are not independent one can devise a direct perturbation
theory, using a single small parameter. To this end, note that since Q must be proportional
to the gradient of the temperature and/or density (to O(K )) it follows from the balance of the
spatial decay of the heat flux and the energy sink (which is proportional to ε) that K 2 scales as
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ε; in addition, since the derivative of the (logarithm of) the granular temperature is proportional
to g, gravity should be scaled with K . Therefore one can define the following scaling, using
the Knudsen number, K ≡ �

L : γ K ≡ 3g�
T (note that γ here is different than in the previous

subsection) and ε ≡ δK 2. With these definitions one can construct a perturbative expansion in
powers of K alone (in which γ is taken to be O(1), as is δ). Notice that the above assumption
precludes the case of ‘strong’ gravity, i.e., when the gain or loss of speed during a mean
free time can be comparable to the thermal speed. Some technical details now follow. It is

convenient to define D ≡ �uz
d
dz , scale the velocity by the local thermal speed u =

√
3

2T v, and

the distribution function by the local density: f = n( 3
2T )

3
2 f̃ . As before, let f = f0(1+φ), with

f0 = n( 3
2πT )

3
2 e−u2

. The scaled Maxwell distribution function is then f̃0 = π− 3
2 e−u2

. Upon
expanding φ in powers of K , φ = φK + φK K + · · ·, and using the above scaling, one generates
a perturbation expansion for the pertinent (and rescaled) Boltzmann equation. At order K one
obtains from the momentum (density) equation D log n + D log T + γ K uz = 0 (where D is
O(K )), and from the Boltzmann equation LφK = D log T (u2 − 5

2 ) = uz(u2 − 5
2 )K

d log T
dz̃ .

This equation is similar to an equation obtained in the general time dependent problem [16],
and its solution can be expressed as φK = K	T (u2)uz

d log T
dz̃ where 	T is a function of the

scalar u, calculated in [16]. The calculation of higher order terms is rather cumbersome and
will not be presented here. Once the distribution function is known, it is straightforward to
use the resulting constitutive relations to obtain the equation satisfied, e.g., by the temperature
field. To second order in K one obtains

d2
√

T

dξ2
− n�g

p(ξ)

2κ − λ

2(κ − λ)

d
√

T

dξ
− δ̃

4(κ − λ)

√
T = 0 (17)

where κ and λ can be read off the constitutive relation for the heat flux in the time dependent
case. The pressure is given by p(ξ) = p0 −(n�g)ξ , and ξ is a length measured in accumulated
mean free paths: ξ ≡ ∫ z

0
dz′
�(z′) . The solution of this equation depends on the boundary

conditions [30].

3.4. Comments on extensions to low and high densities

In the case discussed in the previous section, the upper (large z) part of the granular gas can
be too dilute for the hydrodynamic equations to be valid (high K ). This is expected when the
system has no lid or when the lid is sufficiently high. In this case the boundary conditions on
the hydrodynamic equations are determined by the properties of the transition region between
the low K and high K (or Knudsen) domains. While an effective boundary condition has been
proposed for equation (17) (see [30]), it is still interesting (and important) to study the non-
hydrodynamic domain and its ‘coupling’ to the hydrodynamic region. This is possible since
the Boltzmann operator can be linearized (to leading order) in the hydrodynamic region, and
it is negligible (as would be its linearization) in the Knudsen domain. Furthermore, it is easy
to check that if f is (near) Maxwellian at, say z = z0 in the Knudsen domain, it remains (near)
Maxwellian for z > z0 (with decreasing density). Therefore the ‘local equilibrium’ assumption
still holds (for small ε), even in the Knudsen domain (and uniformly in the system). One needs
therefore to solve the integrodifferential equation vz

∂ f
∂z − g ∂ f

∂vz
= B( f0, f0, e = 1) + f0 Lφ

in the entire system. The solution of this equation can be obtained by employing a similar
method to that used for the derivation of boundary conditions [51], where, as in this case, the
hydrodynamic region borders on a Knudsen domain (the Knudsen layer). Further extensions
of this idea should be useful for the study of the inner structure of shocks. These extensions
are beyond the scope of this paper.
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The extension of kinetics to the description of gases of moderate densities has proven
non-trivial, even in the realm of molecular gases. A common phenomenological method
(which has also been applied to granular gases, see in [1]) is the use of the Enskog–Boltzmann
equation, in which the product of the distribution functions on the rhs of the Boltzmann
equation is multiplied by a volume fraction dependent term (for a more accurate description
see [25]) that models a correction to the molecular chaos assumption. The Enskog–Boltzmann
equation begets hydrodynamic equations of motion which are quite reliable in the case of hard
spheres, and are (at least qualitatively) in good agreement with MD simulations. However,
their validity for granular gases remains questionable. A method which is in principle superior
to this approach is based on response theory (see in [1]), which is not limited, in principle, to
low densities. However, as its practical application requires the use of a gradient expansion, it
is still limited to near elastic gases.

4. Conclusion

It is still unclear why hydrodynamics should ‘work’ for granular gases in the first place (in
practice, down to e = 0.6 or so), given the lack of scale separation. The extension to moderate
densities is still very much an open problem. It is also not completely clear why models which
ignore friction yield results which are in good agreement with simulations and experiments.
Incidentally, a good theory for frictional granular gases is yet to be developed. The Knudsen
regime, boundary conditions, shocks and other problems need to be studied in depth. Patterns
that are observed in granular gases [1] are nicely described by ‘amplitude equations’ [52]; a
relation of the latter to granular hydrodynamicsneeds to be established. A better understanding
of the instabilities of granular gases needs to be achieved. All of this and more also applies to
granular mixtures [53], which are even less well understood than monodisperse granular gases.
While the above list of open problems is far from exhaustive, we would like to mention just one
more important problem,which would connect the ideal models used in theory (mostly spheres)
to reality, namely the problem of describing the kinetics and hydrodynamics of non-spherical
grains.
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Appendix A. A computationally aided method for solving Lφ = R

A recurrent problem in the Chapman–Enskog expansion is the solution of equations of the type
Lφ = R, where L is the linearized Boltzmann operator (corresponding to elastic collisions)
and R is an n-dimensional tensor in the peculiar velocity u (when frictional interactions
are accounted for, R may also depend on the angular velocity, but this case is not treated
below). A standard method for inverting L involves the expansion of φ and R in a complete
set of orthogonal polynomials, the weight function being the equilibrium distribution. This
transforms the above equation into a matrix inversion problem. The dimension of the matrix
is determined by the maximal order of the employed polynomials. While matrix inversion
is easily carried out using standard software, the multi-dimensional integrals arising in the
process are not trivial to calculate. It turns out that it is relatively easy to compute the action
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of L on the generating function for the desired polynomials, and then take derivatives of the
result. The high order derivatives one needs to take comprise a formidable task, if one needs
to do so by hand. However, symbolic manipulators take derivatives very rapidly (and make no
mistakes!). Here we demonstrate the method we have developed on the case of hard spheres,
and the polynomials are chosen (as is standard in this problem) to be the Sonine polynomials;
see appendix B. A different method was proposed in [54].

Consider e.g., the equation corresponding to the linear order in K , equation (7). As
mentioned in the text following equation (7), the isotropy of L implies that φK has the same
tensorial form as R. The form of the solution is given in equation (8). Below we denote
	̂T (u2) ≡ 	̂c(u)(u2 − 5

2 ). The linearity of L implies that equation (7) can be separated into
two problems: L[	T (u2)ui ] = (u2

1 − 5
2 )u1i ≡ RT , and L[	v(u2)ui u j ] = u1i u1 j ≡ Rv .

The choice of the specific Sonine polynomials to expand in depends on the rank of the tensor
that appears on the right-hand side of the equation; it is convenient to expand in terms of
Sonine polynomials Sr

m(u
2) with m = 1

2 for a scalar rhs, m = 3
2 for a vector rhs, m = 5

2 for
a second order tensor rhs and so on. For the present example, the following expansions are
convenient: 	T (u2) = ∑N

r=0 	̂T r Sr
3
2
(u2) and RT (u2) = ∑N

r=0 aT r Sr
3
2
(u2). The projection of

the above two equations on the appropriate polynomials is carried out by operating on them
with

∫
u1i e−u2

1 S p
3
2
(u2

1) du1 and
∫

u1i u1 j e−u2
1 S p

5
2
(u2

1) du1, respectively (summing over repeated

indices). One thus obtains
∞∑

r=0

	̂T r

∫
u1i e−u2

1 S p
3
2
(u2

1)L
[

Sr
3
2
(u2)ui

] ∣∣∣∣
u=u1

du1 =
∞∑

r=0

aT r

∫
u2

1e−u2
1 S p

3
2
(u2

1)S
r
3
2
(u2

1) du1

and
∞∑

r=0

	̂vr

∫
u1i u1 j e−u2

1 S p
5
2

(u2
1)L

[
Sr

5
2
(u2)ui u j

] ∣∣∣∣
u=u1

du1

= 2
3

∞∑
r=0

avr

∫
u4

1e−u2
1 S p

5
2
(u2

1)S
r
5
2
(u2

1) du1, (A.1)

where use has been made of u1i u1 j u1i u1 j = 2
3 u4

1. Next, rewrite equations (A.1) in the form

∞∑
r=0

M (T )
pr 	̂T r = 2π

�(p + 5
2 )

p!
δp,1

∞∑
r=0

M (v)
pr 	̂vr = 4π

3

�(p + 7
2 )

p!
δp,0

where

M (T )
pr =

∫
u1i e−u2

1 S p
3
2
(u2

1)L
[

Sr
3
2
(u2)ui

] ∣∣∣∣
u=u1

du1

M (v)
pr =

∫
u1i u1 j e−u2

1 S p
5
2

(u2
1)L

[
Sr

5
2
(u2)ui u j

] ∣∣∣∣
u=u1

du1.

The matrix elements of M (T )
pr M (v)

pr are quite hard to calculate directly. It is convenient to define
the following generating functions:

M (T )(s, t) ≡
∞∑

p,r=0

s ptr M (T )
pr = 1

π
5
2

(1 − s)−
5
2 (1 − t)−

5
2

∫
k·u12>0

du1 du2 e−u2
1

1
1−t e−u2

2

×
[
(u1 · u′

1)e
−u′2

1
s

1−s + (u1 · u′
2)e

−u′2
2

s
1−s − u2

1e−u2
1

s
1−s − (u1 · u2)e−u2

2
s

1−s

]
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M (v)(s, t) = 1

π
5
2

(1 − s)−
7
2 (1 − t)−

7
2

∫
k·u12>0

du1 du2 dk(k · u12)e−u2
1

1
1−s e−u2

2

× [
((u1 · u′

1)
2 − 1

3 u2
1u′2

1 )e
−u′2

1
t

1−t + ((u1 · u′
2)

2 − 1
3 u2

1u′2
2 )e

−u′2
2

t
1−t − 2

3 u4
1e−u2

1
t

1−t

− ((u1 · u2)
2 − 1

3 u2
1u2

2)e
−u2

2
t

1−t
]
.

The calculation of the last two integrals is further facilitated by defining a ‘super-
generating’ function, J0, that can be analytically calculated, and whose derivatives yield these
integrals (and in turn appropriate derivatives of the integrals yield the desired matrix elements).
To this end define the following generalized Gaussian integral:

J0(a, b, c, d, x, y, z, γ , β) =
∫

k·u12>0
du1 du2 dk(k · u12)e

−F

where

F = au2
1 + bu2

2 + cu′2
1 + du′2

2 +
x

2
(u1 + u′

1)
2 +

y

2
(u1 + u′

2)
2 +

z

2
(u1 + u2)

2

+ γ u2
12 + β(k · u12)

2 =
(

a +
x

2
+

y

2
+

z

2

)
u2

1 +
(

b +
z

2

)
u2

2 +
(

c +
x

2

)
u′2

1

+
(

d +
y

2

)
u′2

2 + x(u1 · u′
1) + y(u1 · u′

2) + z(u1 · u2) + γ u2
12 + β(k · u12)

2.

The function F is positive definite, hence the above integral converges.
To calculate J0(a, b, c, d, x, y, z, γ , β) it is convenient to transform to centre of mass and

relative velocities ucm = 1
2 (u1 + u2) and u12 = u1 − u2 and define U = ucm + gu12 + hu′

12

where g ≡ a−b+y+x
2λ , h ≡ c−d+x−y

2λ , and λ ≡ a + b + c + d + 2x + 2y + 2z. Since
u1,2 = U−(g ∓ 1

2 )u12 − hu′
12, and u′

12 = U−gu12 − (h ∓ 1
2 )u

′
12, it follows that F =

λU 2 + µu2
12 + ν(k · u12)

2 where

µ = 1

4

(
a + b + c + d + 2x + 4γ − 1

λ
(a − b + c − d + 2x)

)

ν = 1

2

(
y − x + 2β +

2

λ
(a − b + y + x)(c − d + x − y)

)
.

Using du1 du2 = dU du12, the integration over U,u12 and k is trivial. The result is

J0(a, b, c, d, x, y, z, γ , β) = 2π
7
2

λ
3
2µ(µ + ν)

.

Next, it is convenient to define the operators: δa ≡ − ∂
∂a , δb ≡ − ∂

∂b , δc ≡ − ∂
∂c , δd ≡ − ∂

∂d ,
δx ≡ − ∂

∂x − 1
2 (δa + δc), δy ≡ − ∂

∂y − 1
2 (δa + δd), and δz ≡ − ∂

∂z − 1
2 (δa + δb).

Using this notation, one can rewrite e.g., Mv as follows:

M (v)(s, t) = 1

π
5
2

(1 − s)−
7
2 (1 − t)−

7
2

[(
δ2

x − 1

3
δaδc

)
J0

(
1

1 − s
, 1,

t

1 − t

)

+

(
δ2

y − 1

3
δaδd

)
J0

(
1

1 − s
, 1, 0,

t

1 − t

)
− 2

3
δ2

a J0

(
1

1 − s
+

t

1 − t
, 1

)

−
(
δ2

z − 1

3
δaδb

)
J0

(
1

1 − s
,

1

1 − t

)]
.

In the above, a set of zeros in the arguments of J0 is omitted for simplicity (e.g., J0(
1

1−s , 1, t
1−t )

really means J0(
1

1−s , 1, t
1−t , 0, 0, 0, 0, 0, 0). In addition, the derivatives are to be followed by

a substitution of the actual values of the parameters a, b, c, and d , and zero for the rest of the
parameters, In the present case: a = 1

1−s , b = 1, c = t
1−t , and d = x = y = z = γ = β = 0.
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As mentioned, the derivatives can easily be carried out by a symbolic processor. The order (in
the Sonine expansion) to which the calculations can be carried out depends on the available
memory. Our old PC could easily compute the eighth order for all terms we needed in the CE
expansion.

The construction of the matrix from the generating function is not always as simple as in the
above example. Consider, for instance, the case R(u) = h(u2)ui u j = ∑∞

r=0 ĥr Sr
5
2
(u2

1)ui u j .

The solution is not, as before, a scalar function multiplied by ui u j but a more general form:
φ(u) = φ(1)(u)δi j +φ(2)(u)ui u j . However, a rather straightforward generalization of the above
method can be applied in such cases as well.

Appendix B. Sonine polynomials: a reminder

The Sonine polynomial Sn
m(x) is the coefficient of sn in the expansion

(1 − s)−m−1e−x s
1−s =

∞∑
n=0

sn Sn
m(x)

and belongs to a complete orthogonal set with the weight function e−x xm . The orthogonality
relations read ∫ ∞

0
e−x xm S p

m(x)S
q
m(x) dx = δp,q

�(m + 1 + p)

p!
.
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